Introduction to Java threads

This article describes how threads are implemented in the Java programming language. Before exploring the details of Java, a general overview of threads is needed.

Simply put, a thread is a program's path of execution. Most programs written today run as a single thread, causing problems when multiple events or actions need to occur at the same time. Let's say, for example, a program is not capable of drawing pictures while reading keystrokes. The program must give its full attention to the keyboard input lacking the ability to handle more than one event at a time. The ideal solution to this problem is the seamless execution of two or more sections of a program at the same time. Threads allows us to do this.

Multithreaded applications deliver their potent power by running many threads concurrently within a single program. From a logical point of view, multithreading means multiple lines of a single program can be executed at the same time, however, it is not the same as starting a program twice and saying that there are multiple lines of a program being executed at the same time. In this case, the operating system is treating the programs as two separate and distinct processes. Under Unix, forking a process creates a child process with a different address space for both code and data. However, fork() creates a lot of overhead for the operating system, making it a very CPU-intensive operation. By starting a thread instead, an efficient path of execution is created while still sharing the original data area from the parent. The idea of sharing the data area is very beneficial, but brings up some areas of concern that we'll discuss later.

Creating threads
Java's creators have graciously designed two ways of creating threads: implementing an interface and extending a class. Extending a class is the way Java inherits methods and variables from a parent class. In this case, one can only extend or inherit from a single parent class. This limitation within Java can be overcome by implementing interfaces, which is the most common way to create threads. (Note that the act of inheriting merely allows the class to be run as a thread. It is up to the class to start() execution, etc.)

Interfaces provide a way for programmers to lay the groundwork of a class. They are used to design the requirements for a set of classes to implement. The interface sets everything up, and the class or classes that implement the interface do all the work. The different set of classes that implement the interface have to follow the same rules.

There are a few differences between a class and an interface. First, an interface can only contain abstract methods and/or static final variables (constants). Classes, on the other hand, can implement methods and contain variables that are not constants. Second, an interface cannot implement any methods. A class that implements an interface must implement all methods defined in that interface. An interface has the ability to extend from other interfaces, and (unlike classes) can extend from multiple interfaces. Furthermore, an interface cannot be instantiated with the new operator; for example, Runnable a=new Runnable(); is not allowed.

The first method of creating a thread is to simply extend from the Thread class. Do this only if the class you need executed as a thread does not ever need to be extended from another class. The Thread class is defined in the package java.lang, which needs to be imported so that our classes are aware of its definition.

import java.lang.*;

public class Counter extends Thread

{

 public void run()

 {

 }

}

The above example creates a new class Counter that extends the Thread class and overrides the Thread.run() method for its own implementation. The run() method is where all the work of the Counter class thread is done. The same class can be created by implementing Runnable:

import java.lang.*;

public class Counter implements Runnable

{

 Thread T;

 public void run()

 {

 }

}

Here, the abstract run() method is defined in the Runnable interface and is being implemented. Note that we have an instance of the Thread class as a variable of the Counter class. The only difference between the two methods is that by implementing Runnable, there is greater flexibility in the creation of the class Counter. In the above example, the opportunity still exists to extend the Counter class, if needed. The majority of classes created that need to be run as a thread will implement Runnable since they probably are extending some other functionality from another class.

Do not think that the Runnable interface is doing any real work when the thread is being executed. It is merely a class created to give an idea on the design of the Thread class. In fact, it is very small containing only one abstract method. Here is the definition of the Runnable interface directly from the Java source:

package java.lang;

public interface Runnable {

 public abstract void run();

}

That is all there is to the Runnable interface. An interface only provides a design upon which classes should be implemented. In the case of the Runnable interface, it forces the definition of only the run() method. Therefore, most of the work is done in the Thread class. A closer look at a section in the definition of the Thread class will give an idea of what is really going on:

public class Thread implements Runnable {

...

 public void run() {

 if (target != null) {

 target.run();

 }

 }

...

}

From the above code snippet it is evident that the Thread class also implements the Runnable interface. Thread.run() checks to make sure that the target class (the class that is going to be run as a thread) is not equal to null, and then executes the run() method of the target. When this happens, the run() method of the target will be running as its own thread.

Starting and stopping

Since the different ways to create an instance of a thread are now apparent, we will discuss the implementation of threads beginning with the ways available to start and stop them using a small applet containing a thread to illustrate the mechanics:

The above applet will start counting from 0 displaying its output to both the screen and the console. A quick glance might give the impression that the program will start counting and display every number, but this is not the case. A closer examination of the execution of this applet will reveal its true identity.

In this case, the CounterThread class was forced to implement Runnable since it extended the class Applet. As in all applets, the init() method gets executed first. In init(), the variable Count is initialized to zero and a new instance of the Thread class is created. By passing this to the Thread constructor, the new thread will know which object to run. In this case this is a reference to CounterThread. After the thread is created it needs to be started. The call to start() will call the target's run() method, which is CounterThread.run(). The call to start() will return right away and the thread will start executing at the same time. Note that the run() method is an infinite loop. It is infinite because once the run() method exits, the thread stops executing. The run() method will increment the variable Count, sleep for 10 milliseconds and send a request to refresh the applet's display.

Note that it is important to sleep somewhere in a thread. If not, the thread will consume all CPU time for the process and will not allow any other methods such as threads to be executed. Another way to cease the execution of a thread is to call the stop() method. In this example, the thread stops when the mouse is pressed while the cursor is in the applet. Depending on the speed of the computer the applet runs on, not every number will be displayed, because the incrementing is done independent of the painting of the applet. The applet can not be refreshed at every request, so the OS will queue the requests and successive refresh requests will be satisfied with one refresh. While the refreshes are queuing up, the Count is still being incremented but not displayed.

Suspending and resuming

Once a thread is stopped, it cannot be restarted with the start() command, since stop() will terminate the execution of a thread. Instead you can pause the execution of a thread with the sleep() method. The thread will sleep for a certain period of time and then begin executing when the time limit is reached. But, this is not ideal if the thread needs to be started when a certain event occurs. In this case, the suspend() method allows a thread to temporarily cease executing and the resume() method allows the suspended thread to start again. The following applet shows the above example modified to suspend and resume the applet.

public class CounterThread2 extends Applet implements Runnable

{

 Thread t;

 int Count;

 boolean suspended;

 public boolean mouseDown(Event e,int x, int y)

 {

 if(suspended)

 t.resume();

 else

 t.suspend();

 suspended = !suspended;

 return true;

 }

 ...

}

CounterThread2 Example and Source code

To keep track of the current state of the applet, the boolean variable suspended is used. Distinguishing the different states of an applet is important because some methods will throw exceptions if they are called while in the wrong state. For example, if the applet has been started and stopped, executing the start() method will throw an IllegalThreadStateException exception.

Scheduling

Java has a Thread Scheduler that monitors all running threads in all programs and decides which threads should be running and which are in line to be executed. There are two characteristics of a thread that the scheduler identifies in its decision process. One, the most important, is the priority of the thread, the other is the daemon flag. The scheduler's basic rule is if there are only daemon threads running, the Java Virtual Machine (JVM) will exit. New threads inherit the priority and daemon flag from the thread that created it. The scheduler determines which thread should be executed by analyzing the priorities of all threads. Those with the highest priority are allowed execution before any lower priority threads.

The scheduler can be of two flavors, preemptive or non-preemptive. Preemptive schedulers give a certain time-slice to all threads running on the system. The scheduler decides which thread is next to run and resume() that thread for some constant period of time. When the thread has executed for that time period it will be suspended() and the next thread scheduled will be resumed(). Non-preemptive schedulers decide which thread should run and run it until the thread is complete. The thread has full control of the system for as long as it likes. The yield() method is a way for a thread to force the scheduler to start executing another waiting thread. Depending on the system Java is running on, the scheduler can be either preemptive or non-preemptive.

Priorities

The scheduler determines which thread should be running based on a priority number assigned to each thread. The range of priorities is from 1 to 10. The default priority of a thread is Thread.NORM_PRIORITY, which is assigned the value of 5. Two other static variables are made available, they are Thread.MIN_PRIORITY, which is set to 1, and Thread.MAX_PRIORITY, which is set to 10. The getPriority() method can be used to find the current value of the priority of a thread.

Daemon threads

Daemon threads are sometimes called "service" threads that normally run at a low priority and provide a basic service to a program or programs when activity on a machine is reduced. An example of a daemon thread that is continuously running is the garbage collector thread. This thread, provided by the JVM, will scan programs for variables that will never be accessed again and free up their resources back to the system. A thread can set the daemon flag by passing a true boolean value to the setDaemon() method. If a false boolean value is passed, the thread will become a user thread. However, this must occur before the thread has been started.

Scheduling example

The following applet demonstrates the execution of two threads with different priorities. One thread is running at the lowest priority and the other at the highest priority. The threads will count until the faster thread's counter catches up to the slower threads counter.

ScheduleThreads Example and source code

Conclusion

Using threads in Java will enable greater flexibility to programmers looking for that extra edge in their programs. The simplicity of creating, configuring and running threads lets Java programmers devise portable and powerful applets/applications that cannot be made in other third-generation languages. Threads allow any program to perform multiple tasks at once. In an Internet-aware language such as Java, this is a very important tool.

